Normalized, Segmented or Called aCGH Data?

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Normalized, Segmented or Called aCGH Data?

Array comparative genomic hybridization (aCGH) is a high-throughput lab technique to measure genome-wide chromosomal copy numbers. Data from aCGH experiments require extensive pre-processing, which consists of three steps: normalization, segmentation and calling. Each of these pre-processing steps yields a different data set: normalized data, segmented data, and called data. Publications using ...

متن کامل

Segmented Data

In mobile robotics, pure geometric representations may not be well suited for navigation in large scale environments. New models combine topological and metrical information to give compact and eecient representations. In this paper, we brieey remind the outlines of the construction of our Vorono-like graph and give further details about its implementation in a real environment. Several trials ...

متن کامل

Waved aCGH: to smooth or not to smooth

Array-based comparative genomic hybridization (aCGH) is a powerful tool to detect genomic imbalances in the human genome. The analysis of aCGH data sets has revealed the existence of a widespread technical artifact termed as 'waves', characterized by an undulating data profile along the chromosome. Here, we describe the development of a novel noise-reduction algorithm, waves aCGH correction alg...

متن کامل

aCGHViewer: A Generic Visualization Tool For aCGH data

Array-Comparative Genomic Hybridization (aCGH) is a powerful high throughput technology for detecting chromosomal copy number aberrations (CNAs) in cancer, aiming at identifying related critical genes from the affected genomic regions. However, advancing from a dataset with thousands of tabular lines to a few candidate genes can be an onerous and time-consuming process. To expedite the aCGH dat...

متن کامل

Spectral analysis of segmented data

Time series analysis is reformulated to allow processing of segmented data. This involves the reformulation of parameter estimation and order selection. Parameter estimation for autoregressive (AR) models is done by tting a single model to all segments simultaneously. Parameter estimation for moving average (MA) and the combined ARMA models can be derived entirely from long autoregressive mode...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Cancer Informatics

سال: 2007

ISSN: 1176-9351,1176-9351

DOI: 10.1177/117693510700300030